Activation of mu opioid receptors inhibits microglial cell chemotaxis.
نویسندگان
چکیده
Opiates modulate many macrophage functions. Microglia, the resident macrophages of the brain, migrate to sites of inflammation within the CNS. Using primer sets designed to span the entire open reading frame of the human brain mu opioid receptor (MOR), we found that microglial cells constitutively expressed MOR mRNA. The cDNA sequences of the MOR open reading frame in microglia were identical to those of human brain tissue. Using enriched human fetal microglial cell cultures, we found that morphine potently inhibited the directed migration (chemotaxis) of microglial cells toward C5a in a dose-dependent manner with an IC50 value of 1 fM morphine. We also found that DAMGO, a selective MOR ligand, dose-dependently suppressed microglial cell chemotaxis with an IC50 value of 1 nM, which was significantly attenuated by 10 nM beta-funaltrexamine. Taken together, these findings suggest that activation of constitutively expressed MOR inhibits microglial cell chemotaxis and support the notion of an anti-inflammatory role of MOR within the brain.
منابع مشابه
Delta-Opioid Receptor Analgesia Is Independent of Microglial Activation in a Rat Model of Neuropathic Pain
The analgesic effect of delta-opioid receptor (DOR) ligands in neuropathic pain is not diminished in contrast to other opioid receptor ligands, which lose their effectiveness as analgesics. In this study, we examine whether this effect is related to nerve injury-induced microglial activation. We therefore investigated the influence of minocycline-induced inhibition of microglial activation on t...
متن کاملHeterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain.
The chemokines use G protein-coupled receptors to regulate the migratory and proadhesive responses of leukocytes. Based on observations that G protein-coupled receptors undergo heterologous desensitization, we have examined the ability of chemokines to also influence the perception of pain by cross-desensitizing opioid G protein-coupled receptors function in vitro and in vivo. We find that the ...
متن کاملOpioid receptor subtype expression defines morphologically distinct classes of hippocampal interneurons.
The inhibition of hippocampal pyramidal cells occurs via inhibitory interneurons making GABAergic synapses on distinct segments of the postsynaptic membrane. In area CA1 of the hippocampus, the activation of mu- and delta-opioid receptors inhibits these interneurons, thereby increasing the excitability of the pyramidal cells. Through the use of selective opioid agonists and biocytin-filled whol...
متن کاملAgonist activation of delta-opioid receptor but not mu-opioid receptor potentiates fetal calf serum or tyrosine kinase receptor-mediated cell proliferation in a cell-line-specific manner.
Activation by opioid receptors of cell proliferation was examined with fibroblast cell lines stably expressing either delta-opioid or mu-opioid receptors. Addition of [D-Ala2, D-Leu5]-enkephalin or [D-Pen2,D-Pen5]-enkephalin to Chinese hamster ovary (CHO) cells transfected with delta-opioid receptor cDNA resulted in an agonist concentration-dependent potentiation of fetal calf serum (FCS)-stimu...
متن کاملInvolvement of Mu Opioid Receptor Signaling in The Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis
Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamineinduced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 281 2 شماره
صفحات -
تاریخ انتشار 1997